fbpx

Developing Engineering Talent

In our work with schools over the past 4 years we’ve noted some key gaps in experiences and skills that limit what students are able to accomplish on K-12 engineering projects. We’ve also noticed that pulling in the resources that can support students as they take on more complex work is much easier when there’s a chance to see students do great things.

There are systems in place that allow kids coming out of high school to perform at a very high level in music or sports.

What if we did the same for engineering?

At Learn Deep we see the potential for a great K-12 farm system to develop diverse engineering talent in Milwaukee and want to get that moving as a collaborative effort. On Tuesday, we took the first step by convening a working session that included K-12 educators, engineering faculty, industry mentors, and organizations with STEM/engineering programming for K-12 students. As a group we used that session to identify the gaps in skills and experiences that slow their development of talents useful in engineering. 

photo of Learn Deep workshop attendees discussing engineering talent development approaches
educators, engineers and academics discuss gaps in developing great engineering talent.

What makes for an effective problem solver? 

We put together the diagram here a few years ago as we pondered this question.  Effective problem solvers draw on each of these 4 areas:

Experiences
What does this problem remind me of?

  • How I felt
  • How people reacted
  • What worked
  • What didn’t work
  • etc…

Knowledge
What knowledge can I bring?

  • Math
  • Technology
  • Design
  • Psychology
  • History
  • Tools are appropriate for a problem like this,
  • etc…

Relationships
Who do I know that can:

  • Support me
  • Provide guidance/advice
  • Connect me to others
  • Act as a mentor
  • etc…?

Skills
What skills can I bring?

  • Analytical
  • Creative
  • Communication
  • Collaboration
  • Prototyping
  • etc…

Dispositions
I bring:

  • Curiosity
  • Grit
  • Growth mindset
  • Openness
  • etc…

We have been using this insight in the development of many of our projects to date, including our unique Zoo Train Engineering project.

What would we like to see as students develop talents that are valued in engineers?

Not surprisingly, this structure works pretty well for talking through what we heard from the group. 

Experiences

  • Building things
  • Working with tools
  • Working with materials and other resources
  • Designing solutions for real world problems
  • Using mathematical reasoning to flesh out and evaluate design options
  • Working as part of a team
  • Problem solving in a context that emphasizes process over results
  • Working alongside a college student or professional to understand how they approach engineering challenges
  • Presenting their work to an authentic audience

Knowledge

  • Comfort with introductory statistics
  • “Calculus ready” math knowledge by high school graduation
  • Physics
  • Understanding of how materials go together

Relationships

  • Knowing an engineer that “looks like me”
  • Feeling part of a team

Skills

  • Spatial thinking
  • Effective time management
  • Able to listen to and understand a customer’s needs
  • Able to use empathy and observation to identify or understand a problem someone else has.
  • Able to build a solid understanding of a problem before jumping to solutions
  • Able to effectively communicate one’s ideas

Dispositions

  • Able to self direct learning
  • Willingness to explore “risky” options
  • Having a sense of ownership of one’s work
  • Resourcefulness — willing to seek out help or other resources to gain understanding
  • Willingness to accept “failure”– e.g. recognize that a solution does not work and learn from that.
  • Willingness to recognize that the first, last, or their own idea for a possible solution may not be the best approach
  • Problem seeking — willingness to see out problems that might be interesting to solve

What do effective farm systems in other domains look like?

In preparation for the session we pulled together the following table, which sketches out the formal and informal opportunities students have to develop their talents in sports and music. As one ponders what a farm system for engineering talent might look like, one question that jumps out to us is where are the opportunities for play, and are they available to students who’s families may not have the resources to provide materials which can allow that to happen.

SettingSportsMusic
Informal play Pick up games with friends/family, might include a mix of ages; no requirement for full field or team–e.g. play with what and who you have availableNo emphasis on practice, but one might get some informal coaching/feedback from other participants during play  (“nice pass”, “next time you are doing that, look for…”) Play alone or with friends/family. Might include a mix of ages; no requirement for specific combination of instruments–e.g. play with what and who you have available.No emphasis on practice, but one might get some informal coaching/feedback from other participants during play  (“nice lick”, “next time you are doing that, look for…”) 
Informal practice Practice skills on one’s own or with friends/familyPractice skills on one’s own or with band mates
School class: play + practice  Major focus is on play, with some practice of skillsMajor focus is on play, with some practice of skills
School team/group or development program: focused practice  + playregular practice aimed at skill development regular play as an opportunity to exercise skills strong social component with an opportunity to learn from more skilled peersregular practice aimed at skill developmentregular play as an opportunity to exercise skillsstrong social component with an opportunity to learn from more skilled peers
Private lessons: focused practice regular practice and feedback aimed at skill development  regular practice and feedback aimed at skill development  
Master Class
Feedback from outside professionals with emphasis on skill development
Performances/games; competitions/tournamentsdemonstration play with chance to test skills against peersdemonstration play; chance to test skills against peers
Opportunities to guide younger participants:youth coach or ref?
Opportunities to observe others:Games played by peersProfessional gamesYou tube videos of games and skillsMusic played by peers
Professional concertsYou tube videos of concerts and skills

So what might an effective farm system for engineering talent look like?

Key ideas that came out of our discussion include:

  • Programming/curriculum is aligned across grade levels so that students have a chance to build on skills they’ve begun to develop;
  • Students and teachers are able to engage with industry expertise in the context of authentic projects. The easiest way for industry to participate is to have a clear ask– what expertise do you need when to do what. Having something concrete to respond to makes it much easier for a firm to see how well that effort aligns with their own goals for community engagement or talent development.
  • Students are given the opportunity to practice in context. Students need multiple opportunities to run through the engineering design cycle on projects that matter to them.
  • Students have a chance to prototype and work with materials throughout the design process and use that experience to refine their thinking about both the problem at hand and potential solutions.
  • Projects are structured with a strong emphasis on process to help students resist the temptation to jump to a solution before understanding the problem, be willing to explore “riskier” ideas, and to aim for knowledge gain over “the right solution”.
  • Students have informal opportunities to play with engineering in the same ways they might with music or sports.
  • Students build technical skills in math and physics in concert with engineering design. PLTW is not a substitute for a math or physics class, but a complement to it.
  • There is a community of practitioners working together to develop engineering talent. That community includes K-12 educators, university faculty, organizations that provide STEM programming, and industry expertise willing to work with students. Through ongoing collaboration, this community can build and strengthen the relationships that allow its members to find new opportunities for students.

What’s next?

Our next two Collab Labs provide opportunities to explore some of the ideas raised in this session.  The March 12th session is focused on our Career Interviews project. We’re working with UWM and area high schools to prototype a process where students interview folks engaged in interesting work in Milwaukee. Beyond giving students a broader sense of what’s possible to do, we see this collaborative effort as an easy way for students to make an initial connection with folks in industry.

Our April Collab Lab will focus on tapping industry expertise.  This will be an opportunity to take a deeper look at the types of engagements most valuable to educators and students, what makes that engagement worthwhile for both individuals and their employers, and what could help reduce the friction around matching expertise with educators who want to leverage it.

Join us for either or both sessions to share your perspective and ideas.

As we continue to digest what we heard at the session and in conversations that have continued afterwards, we have a couple of other ideas we’re exploring.  Stay tuned or let us know if you’d like to get involved!

One more thing…

One of the folks I connected with as we planned Tuesday’s session was Shannon Smyth, the Youth Technical Director for the North Shore United Soccer Club. Shannon trains youth coaches in the methods recently adopted by US Soccer not just as a way to help students more rapidly develop technical skills, but to build broader participation and the creative talent of players coming up through the system. Shannon sees a lot of parallels between efforts to keep girls engaged in sport and those to keep them engaged in STEM. We shared an overview of the Play-Practice-Play model Shannon uses in advance of the session. You can find that here.

STEM Studio

Last spring, with funding from Northwestern Mutual, we conducted interviews with teachers and mentors involved with MPS’s efforts to introduce Project GUTS, SHARP Literacy’s Design Through Code (DTC) program, TEALS, and First Robotics. The goal was to understand how we might expand opportunities to develop computational thinking outside of computer science classes, by listening to what drew teachers and mentors already engaged in that type of activity to take on the task. We provided a recap of that work here.

One of the ideas that came out of that effort was to work with teams of teachers and expertise from the broader community to create and pilot real world projects that provide solid opportunities to engage students in computational thinking. We call that the STEM Studio, and are happy to report that Northwestern Mutual has provided funding to design and pilot the first projects with MPS.

Since environmental science is a spring semester focus for MPS middle schools, we used our November Collab Lab on Green Infrastructure to generate ideas for potential projects. One of those is the Southeastern Wisconsin Watershed’s Trust’s (Sweetwater) Adopt a Storm Drain Program. As we talked about what that might look like as a STEM Studio project, Sweetwater pointed us to the Smart City Reverse RFP offered by Caravela IoT. That initiative seeks to demonstrate the potential to leverage a network of sensors that detect environmental data. Winning submissions would receive both equipment and technical support to pilot a project. We partnered with MPS, Sweetwater and Reflo to put in a joint proposal which uses STEM Studio pilot projects to both deploy sensors and expose students to the technology. We were selected as one of the winners and are happy to now have Caravela IoT engaged with us in the STEM Studio effort.

Over the next few weeks we’ll be pulling our teams of teachers together with community partners to design and pilot the experiences we want students to have as they take on the STEM Studio projects. Collab Lab attendees will know that one of our criteria for projects we get involved in is the ability to scale across schools with network effects. As part of the STEM Studio pilots, we’ll work with the teams to reflect on what worked, what didn’t, and what the next cohort of teachers will want to have in place to take on or extend the challenge in their schools.

Collab Lab 32: Recap & Notes

Last Thursday’s Collab Lab explored what teacher-centric professional development might look like.  We had participants introduce themselves by sharing their best and worst PD experiences. As we listened to those conversations, one thing that stood out was the number of times the physical setting of the PD session came into play– an offsite location offered an opportunity to shift thinking, a session which had teachers sitting on cafeteria benches for two hours conveyed that those planning the session had not considered what the experience would be like for participants.

With those experiences as background, the first task for attendees was to inventory what they hope to gain/provide through PD. Those ideas fell into several broad categories:

Enthusiasm & Inspiration:

  • Excitement to replicate and extend
  • Inspiration
  • Enthusiasm
  • Enhancement of skills
  • Excitement — I want to leave and keep on working on it
  • Exciting change focused, purposeful, sound rationale
  • Transformation
  • Motivation to do what is best for students
    • their learning
    • their retention
    • their personal growth
  • Fun, humor, interactive
  • How PD looks for females

Gain Knowledge

  • Gain Knowledge about specific tech subjects– AI, VR, etc.
  • Learn to engage students in new technologies purposefully
  • See great pedagogy modeled and be able to practice it
  • Rich content
  • Increase knowledge…
    • student relationships
    • engaging students
  • Knowledge that pertains to me!
  • Chance to learn from everyone in the room [recognize the experience in the room]
  • Develop a different perspective regarding those around us
  • Resources
  • Realistic or tangible outcomes
  • Share researched based best practices
  • Access to new information
  • Knowledge
  • Current best practices
  • New perspectives
  • Authentic experiences
  • Actionable skills, knowledge, connections

Collaboration

  • A space to collaborate & innovate
  • Ideas surrounding achieving classroom equity at the college and eventually university level
  • Follow up/accountability
  • Engagement through action and collaboration
  • Applicable/relevant
  • Processing time
  • Opportunities to reflect
  • Group of similar professionals for
    • encouragement
    • support
    • common passion
  • A tribe

Connections

  • Connections for students
  • Authentic experiences
  • Excitement, passion, purpose
  • Exposure to other experts, mentors, coaches
  • Real access to tools, tech, mindset of others in an interest area
  • Contacts/networking
  • Fellow, passionate learners
  • Teacher to teacher PD
  • Respect as a capable adult learner
  • Opportunities to share my expertise
  • Form a supportive community
  • Increase collaboration among staff on working with students
  • Growing a community of learners.

Stretch & dive deep

  • Be forced to struggle and stretch
  • A desire to want more — go deeper
  • Stretch
  • Deeper investment in your work
  • Student PD — if you could learn anything at school what would it be?
  • Domain specific PD
  • Become better/more effective at what you want to do
  • Opportunities for students to grow, motivate their self in learning

Visions of what PD could be

With this broad set of goals in hand, we allowed a bit more time for conversation about how one might realize one more of those. From there we asked attendees to pair up and create a vision of what PD that aims to meet some of those goals might look like. Here’s some of what was shared.

Implementation of a school wide-initiative

Focus

  • One big goal or vision for whole school

It is not

  • A lecture
  • Cookie cutter

Participants

  • all stakeholders [in strategic teams that make sense]

It happens

  • Off site, neutral territory
  • As a 3-5 year plan with set SMART goals and monthly check in intervals

I’m able to leverage it 

  • Because all other PD is filtered through this vision
  • As a realistic shared vision — teams set goals aligned with vision

Community

Focus

  • Supporting persistence & community

It does not

  • Have a top-down structure
  • Feel contrived

Participants

  •  A group of people with a shared goal

It happens

  • In varied settings, especially getting people out of their everyday environment
  • Settings where everyday pressures are less pressing (leave town?)
  • Includes both structured and unstructured time

I’m able to leverage it

  • By having the flexibility to allow good things to happen
  • Let participants lead

A specific helpful computer program (one of many)

Focused on

  • Benefits & “how tos” of a new program

It is not

  • Condescending
  • Just a lecture
  • A one one and done or passing trend

It includes for participants

  • Hands on exploration
  • QA, comments, input from participants
  • Brainstorming, how could you use this?
  • Builds enthusiasm
  • Offers + schedule of follow up support for participants at all levels
  • Time for follow up
  • Research based, relevant
  • Of value — time saving/increased effectiveness

Team Cohesion

Focused on

  • Creating a more collaborative and safe team environment by establishing norms and committing to action

It does not

  • Provide space for admiring the problem and creating blame

It includes as participants

  • The entire team

It happens

  • At a retreat

I’m able to leverage it 

  • By creating a commitment to change and holding myself accountable for it.

Mindful moments

Focus

  • Transitions when students enter class. Being present and acknowledging current mental state/capacity for learning. 
  • Self compassion, self awareness, self efficacy

It does not

  • Have lectures or assignments
  • Mandate the rules of how to apply or engage

Participants

  • Teachers/faculty

It happens

  • 45-50 minutes initial time of session demonstrating strategies for teachers to learn and practice
  • Follow up email with people who are practicing/to share with others

I’m able to leverage it

  • At the end of the session we build an accountability partnership with other session goers. Email each other to check in once a week for three weeks. After that the partnership will re-assess

Power of Data – GIS

Focus

  • Scientific inquiry using GIS technology
  • Create individual lesson plans
  • Argue from evidence

It is not

  • A lecture

Participants

  • Educators– formal & informal

It happens 

  • As active learning over a 35 hour block

I’m able to leverage

  • Software
  • Career stories
  • Data collection
  • Varied context

Differentiation

Focus

  • Differentiation
    • access
    • accountability
  • learner needs, not roll out of programs

It does not

  • Disrespect the learner. Rather, it encourages choice, voice of participants

Participants

  • Leaders
  • Experts
  • Learners

It happens

  • During regular employee hours but can continue after ours or on vacations

I’m able to leverage it

  • Online, finding continuous connections, learning, teaching others
  • Us in classroom and in other profession
  • By sharing with colleagues

Equity Boot Camp

Focus

  • Equity — education & community
  • Misconceptions about race & identity
  • Racial inequality

It does not

  • Teach historical wrongs ONLY
  • Focus on people of color ONLY
  • Take it easy

Participants

  • Educators
  • Politicians
  • Advocates
  • Naysayers

It happens

  • At a ranch over a weekend in August

I’m able to leverage this to 

  • Tap into people’s desires
  • Immerse people in transformation
  • Take actions (planned during the retreat)
  • Use monthly check-ins and a return in January to move towards resolution)

Thanks!

Thanks to Dec Code Camp for providing the space and to our featured participants for sharing their expertise and ideas:

Amber DuChateau — Education Design and Technology Consultant, UWM School of Nursing

Joe Du Fore — Director of Business Development, Wisconsin Education Innovations

Shaba Martinez — Digital Learning & Library Media Specialist, Bruce Guadalupe Community School

Angela McCarty — Director of Education Services, Milwaukee Teacher Education Center (MTEC)

Deidre Roemer — Director of Leadership and Learning, West Allis West Milwaukee School District

Resources

Our participants shared a number of resources.  Here’s the list:

Code for Milwaukee Internship Program Code for Milwaukee is a civic technology non-profit that builds out projects that serve the greater Milwaukee community and beyond. They are starting an internship program that is open to middle and high school students who will help build out a technology based solution to solve a problem our community faces

MTEC

UWM Power of Data Workshops: 35 hour paid professional development program that enables st secondary teachers to increase students’ content knowledge, 21 Century Skills and awareness of geospatial technology careers through Geospatial Inquiry and data analysis.  June 2020

Wisconsin ArcGIS Map Contest The 2020 Wisconsin map contest is part of the Esri national student ArcGIS Online competition. It is open to all Wisconsin middle and high school students.

2023-24 Collab Labs

Skip to content
Verified by MonsterInsights